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Alexander Klimovich and Thomas C. G. Bosch

Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
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The freshwater polyp Hydra uses an elaborate innate immune machinery
to maintain its specific microbiome. Major components of this toolkit
are conserved Toll-like receptor (TLR)-mediated immune pathways and
species-specific antimicrobial peptides (AMPs). Our study harnesses
advanced technologies, such as high-throughput sequencing and machine
learning, to uncover a high complexity of the Hydra’s AMPs repertoire. Func-
tional analysis reveals that these AMPs are specific against diverse members
of the Hydra microbiome and expressed in a spatially controlled pattern.
Notably, in the outer epithelial layer, AMPs are produced mainly in the
neurons. The neuron-derived AMPs are secreted directly into the glycocalyx,
the habitat for symbiotic bacteria, and display high selectivity and spatial
restriction of expression. In the endodermal layer, in contrast, endodermal
epithelial cells produce an abundance of different AMPs including members
of the arminin and hydramacin families, while gland cells secrete kazal-type
protease inhibitors. Since the endodermal layer lines the gastric cavity
devoid of symbiotic bacteria, we assume that endodermally secreted
AMPs protect the gastric cavity from intruding pathogens. In conclusion,
Hydra employs a complex set of AMPs expressed in distinct tissue layers
and cell types to combat pathogens and to maintain a stable spatially
organized microbiome.

This article is part of the theme issue ‘Sculpting the microbiome: how
host factors determine and respond to microbial colonization’.
1. Introduction: diversity and role of antimicrobial peptides
in Hydra

Antimicrobial peptides (AMPs) are small cationic peptides that play a crucial
role in the innate immune defence of a wide range of organisms from bacteria
to humans [1,2]. These peptides exhibit broad-spectrum activity against various
microorganisms, including bacteria, fungi, viruses and parasites.

The freshwater polyp Hydra, a member of the phylogenetically ancient
phylum Cnidaria (figure 1a–c), has long been used as a model organism for
the study of the immune response evolution [4–6]. Major components of the
Hydra immune toolkit are highly conserved immune pathways mediated by
Toll-like receptors (TLR) [5,7] and nucleotide-binding and oligomerisation
domain-like receptors (NLR) [8]. They are complemented by a rich repertoire
of immune effector molecules—secreted AMPs. While the first AMP in Hydra
was discovered using traditional biochemical approaches [9], the advance of
molecular biology techniques fueled the identification of multiple novel
AMPs, such as the arminins, periculins, kazal-like inhibitors and the neuron-
derived antimicrobial peptide NDA-1 [10–13]. AMPs in Hydra share several
common features: active AMPs are derived from larger precursors through a
post-translational proteolytic cleavage of a signal peptide (figure 1d ). Most
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Figure 1. (a) Phylogenetic tree demonstrating the position of Hydra. High-quality genome datasets have become recently available for three Hydra species—
H. vulgaris AEP, H. oligactis and H. viridissima. The divergence of the crown group Hydra took place about 193 Ma, and two species of brown hydras, H. vulgaris
and H. oligactis, diverged over 100 Ma [3]. (b) A polyp of H. vulgaris AEP strain. It is composed of a tube-shaped body column, a basal disc attaching to a sub-
stratum, and an oral end with a hypostome and ring of tentacles. (c) The Hydra body is composed of the ectodermal and endodermal epithelial layers separated by
the extracellular matrix. The outer surface of the ectoderm is covered by a glycocalyx that serves as a habitat for symbiotic bacteria. The endoderm lining the gastric
cavity is free of glycocalyx and stable microbiota. Cells of the interstitial lineage, including the stem cells, nematocytes, gland cells and the neurons, are embedded
within both epithelia. (d ) Hydra-restricted periculin protein demonstrates key features of Hydra AMPs—small size, presence of a signal peptide (SP), bi-partite
charge distribution and complex pattern of Cys-bridges. (e) Periculin is specifically expressed in the female gamete precursor cells of Hydra. Immunochemical
detection of periculin 1a, DNA stained with TO-PRO3.
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AMPs are characterized by a clear bipartite structure with a
strongly biased distribution of positively and negatively
charged amino acids, and a complex cysteine pattern. Another
notable property of Hydra AMPs is that they are typically
encoded by a number of paralogous genes, hence they rep-
resent distinct gene families. Importantly, the phylogenetic
analysis of AMP genes in Hydra uncovered that no homol-
ogues of these genes can be found in other animals, outside
of the Hydra genus. Therefore, most AMPs of Hydra
appear to be species-specific and, hence, represent so called
taxonomically restricted genes (TRGs) or orphans [14]. This
suggests that the taxonomically restricted AMPs have evolved
relatively recently in the evolution of Hydra and specifically in
response to the unique challenges faced by this animal.

Studies on the Hydra AMPs function provided evidence
that mature secreted peptides possess a specific and often
remarkably strong antibacterial activity, and are able to effec-
tively inhibit growth of gram-positive and -negative bacteria
in vitro [9,11,13,15,16]. These observations led to a hypothesis
that AMPs protect the Hydra from foreign microbes. Later, it
was recognized that, in vivo, they are equally important for
maintaining the diversity of the species-specific bacterial com-
munity stably associated with Hydra, the Hydra microbiome
[1,17]. This has been convincingly demonstrated in exper-
iments where genetic knock-down of individual AMP genes
or their families resulted in profound changes in the Hydra
microbiome composition [11,12,18].

Thus far, AMP genes and their products have been ident-
ified and functionally characterized individually, and no
systematic study attempted to integrate the findings on the
entire suite of AMPs present in each Hydra species. To under-
stand the evolutionary dynamics of Hydra-specific AMPs and
their functional role in maintaining microbiome homeostasis,
a comprehensive, whole-genome-scale survey of the AMPs
repertoire and their expression in Hydra is needed.

Here, we demonstrate how novel technologies, including
high-throughput transcriptome and genome sequencing and
machine learning, provide insights into a high complexity of
theHydra0sAMP repertoire. Further,we uncovera shared feature
of AMP genes genomic organization and common principles
that govern the tissue and cell type-specific expression of these
genes. Furthermore, we explore the evolutionary significance of
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thesegenes and their role in sculpturing theHydra-specificmicro-
biome. Finally, we outline a few open question and perspectives
for further research on this enigmatic group of genes.
 lsocietypublishing.org/journal/rstb
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2. Insights from genomes: AMPs are encoded by
fast evolving genes

The first AMPs discovered inHydra, hydramacin and hydraly-
sin, were initially identified through biochemical purification
from Hydra tissue extracts [9,19]. Recent advancements in
molecular biology techniques, such as expressed sequence
tag analysis (EST) [9,10] and high-throughput transcriptome
sequencing (RNAseq) [13,15], have greatly facilitated the
systematic discovery of novel AMPs in Hydra. The utilization
of these technologies has greatly expanded our understanding
of the diversity and complexity of AMP families in Hydra.
However, it remained unclear how complete was the reper-
toire of AMPs in each Hydra species, and whether all
members of AMP families have been discovered. Recently,
high-quality genome sequences became publicly available
(see figure 1a) for two species of the ‘brown hydra’ phylo-
genetic group (Hydra vulgaris AEP and Hydra oligactis) [20],
and one green hydra species (Hydra viridissima) [21], hence
providing a glimpse into 200 Myr of evolutionary radiation
within the Hydra crown group [3]. Additionally, a number
of high-quality genomes of other hydrozoan cnidarians,
scyphozoans and anthozoans became available [22–26].
Together, these resources allow accurate analysis of AMP
genes and may provide novel insights into the role of AMPs
in the biology of Hydra.

To uncover the complete repertoire of AMPs in Hydra, we
first identified all paralogues of known AMP gene families in
the genome of Hydra vulgaris strain AEP [20] (see electronic
supplementary material text for details; electronic supple-
mentary material, data). This strain is of particular interest,
since it is the only one where functional gene manipulation
by transgenesis is available [27,28]. In the H. vulgaris AEP
genome, we discovered, to our surprise, a very high number
of paralogues within each AMP family, often substantially
higher than previously reported. For instance, we were able
to identify at least 28 paralogues of periculin family genes
(figure 2a,b; electronic supplementary material, table S1),
in contrast to previously reported five periculin isoforms [13].
Although the nucleotide sequences of these 28 paralogues
were clearly different (electronic supplementary material,
figure S1), all these genes demonstrated similar exon-intron
structure (figure 2a), and the amino acid sequences of peptides
encoded by these genes were very remarkably similar (elec-
tronic supplementary material, figure S2). Most intriguingly,
numerous periculin paralogues were found clustered in a few
genomic loci (figure 2a). For instance, in H. vulgaris AEP, two
clusters on chromosome 10 contained 14 and 9 periculin para-
logues, and the other five paralogues were scattered among
three other chromosomes. Avery similar patternwas observed
for other AMP families. We identified a total of nine arminin
paralogues, seven genes of the Kazal-like family, and five
genes encoding Hym357-like neuropeptides with antimicro-
bial activity (figure 2d–f; electronic supplementary material,
table S1).

Taken together, these observations point to a substantial
expansion of AMP gene families inH. vulgarisAEP. The geno-
mic organization of the AMP gene clusters suggests that,
during evolution, the peptide families were formed through
several rounds of tandem gene duplications. This vast gene
expansion appears particularly surprising given the relatively
recent origin of the founder genes: for instance, periculin and
arminin genes are strictly confined to the genus Hydra and,
hence, their origin cannot date back longer that 200 Ma, and
the duplication might have occurred much more recently.
The mechanisms that may have contributed to the rapid evol-
ution of the AMP gene complement in the recent history of
the Hydra genus remain poorly understood.

To explore further the phylogenetic history of the dupli-
cated AMP genes, we used available high-quality genomes of
other Hydra species, as well as other cnidarians (see electronic
supplementary material, text). This analysis of orthologues
yielded three essential observations. First, the general trend
of the presence of multiple paralogues has been confirmed.
For instance, similar to H. vulgaris AEP, the genome of
H. oligactis contained 21 paralogues of periculin family genes
and 12 arminin orthologues (figure 2b,e; electronic supplemen-
tary material, figures S3 and S4; electronic supplementary
material, table S1). These numerous paralogues of AMP
genes were also clustered on the chromosomes of H. oligactis
and H. viridissima, like in the H. vulgaris AEP genome (this
is reflected in close numbers of the gene models from all
three species; figure 2b,e; electronic supplementary material,
table S1).

Second, the phylogenetic reconstruction uncovered that, in
everyHydra species, AMP paralogues from eachHydra species
tend to cluster together, forming species-specific clades
(figure 2b,e; electronic supplementary material, figures S3
and S4). Typically, AMP genes from one species code for
very similar or virtually identical proteins, distinct from
AMPs from other species. For instance, 23 periculin paralogues
inH. vulgarisAEP represent a solid cluster on the phylogenetic
tree (figure 2b; electronic supplementary material, figure S3),
and most likely have emerged from one ancestral sequence
within H. vulgaris AEP. A set of 18 periculin paralogues in
H. oligactis was formed independently (figure 2b; electronic
supplementary material, figure S3).

This clear affinity of paralogues strongly supports their
origination through a repeated and recent gene duplication
within each Hydra species. In addition, in every Hydra species
we uncovered individual representatives of AMP gene
families that were clustering separately from closely related
paralogues (figure 2b,e). These sequences represent, most
likely, the ancestral, founder members of AMP families.
Taken together, our cross-species analysis suggests that the
ancestral state of the AMP gene complement was in fact
very small, composed of three periculin and two arminin para-
logues (figure 2b,e). These gene families underwent a major
expansion later, upon radiation of Hydra species.

To our surprise, we were not able to uncover any hydrama-
cin orthologues in H. viridissima using BLAST and hidden
Markov model (HMM)-based searches (see electronic sup-
plementary material, text), although two orthologues were
confidently detected in the H. oligactis genome. Moreover,
the synteny analysis (see electronic supplementary material,
text) identified only a non-coding sequence in the syntenic
H. viridissima chromosomal region where the hydramacin
orthologue would be anticipated (electronic supplementary
material, figure S5). This suggest that the ancestral arsenal
of AMPs in the last common ancestor of green and brown
hydras was very limited and did not include any hydramacin
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peptides, which evolved later, after the radiation of the crown
Hydra group.

Finally, our screening for putative orthologues of AMP
genes in the genomes of other cnidarians revealed no homol-
ogues even in closely related hydrozoans—Hydractinia and
Clytia. These observations support the notion that AMPs
are truly lineage-restricted genes confined to the Hydra
genus. They evidently emerged about 200 Ma and diverged
further following the radiation of Hydra species. The absence
of any orthologues with at least partial similarity in animals
outside of Hydra genus strongly suggests that the ancestral
AMP genes have emerged de novo [29] from a non-coding
sequence through one of multiple gene birth mechanism
[30]. Although the origin of the founder AMP genes and
the mechanisms of their further expansion in the Hydra line-
age represent a substantial interest, they are beyond the scope
of this study.

Similar to Hydra, the repertoire of AMPs in other animals
and plants is dominated by lineage-specific genes. For
instance, the cathelicidin peptide family is restricted to
vertebrates [31–33], and diptericins are peptides confined
to Diptera [34]. However, one AMP family, the defensins
[35], appears to be omnipresent in the animal kingdom, in
plants and fungi. Numerous defensin genes were in silico
predicted from the genomes of Cnidaria as well [36–38] and
few of them were empirically validated [39]. However, no
members of the defensin family have been described in
Hydra so far. We attempted to mine the genomes of three
Hydra species for genes encoding putative defensins using
BLAST and HMM-based approaches (see electronic sup-
plementary material, text). To our surprise, we were not able
to identify any genes in Hydra genomes coding for peptides
with attributes of canonical defensin family members—
mammalian defensins, arthropod defensins or protostome
big defensins (electronic supplementary material, figure S6).
Given that defensin orthologues are present in other cnidarians,
placozoans and sponges, the most parsimonious explanations
would be that the ancestral defensin genes were either lost in
the Hydra lineage or evolved beyond recognition. We note
that the Hydra-specific AMP hydramacin, in fact, shares
some similarity with defensins (including the presence of six
cystein residues), as previously suggested [9]. It is thus poss-
ible that hydramacin represents a far derived version of an
ancestral defensin AMP.

Although we were not able to detect any bona fide defen-
sins encoded in the Hydra genomes, our analysis uncovered a
family of genes encoding secreted cysteine-rich peptides with
partial similarity to defensins. Similar to defensins, these
peptides possess six Cys residues, likely linked into three
disulphide bonds, yet the spacing between these residues is
clearly different from that characteristic for defensins (elec-
tronic supplementary material, figure S6, S7a). Additionally,
these peptides are rich in tryptophan, and hence, we refer
to them as Hydra cysteine/tryptophan-rich peptides, the
HyCWR peptides. Intriguingly, the predicted HyCWR pep-
tides demonstrated a strongly biased charge distribution,
with the C-terminal portion being strongly positively
charged, however no conventional cleavage site was found
to separate these two portions (electronic supplementary
material, figure S7a). We also note that the HyCWR genes
represent a family of related genes, which comprises at least
five orthologues in H. vulgaris AEP, seven in H. oligactis and
one in H. viridissima (electronic supplementary material,
figure S7a; electronic supplementary material, table S1),
whereby several paralogues are typically located in the
same genomic locus. Therefore, the HyCWR peptides in
their structure and the genomic architecture of their genes
follow similar trends described for AMPs in Hydra. However,
we emphasize that it remains unclear whether the HyCWR
peptides indeed display antimicrobial activity in vitro and in
vivo. It is plausible that, in the absence of bona fide defensins,
the non-related yet structurally similar HyCWR peptides
take over their function. Taken together, a genome-wide
mining for AMP sequences and cross-species comparison of
AMP genes reveal a high complexity of AMP families in
Hydra and suggest a complex gene family evolution within
the Hydra genus.
3. Insights from scRNAseq—AMP genes are
selectively expressed in certain cell types

Previous findings uncovered that most AMP genes are
constitutively transcribed at a very high level. For instance,
arminin mRNAs were reported to be more abundant that
β-actin transcripts [12]. Similarly, periculin transcripts were
among the most abundant transcripts in female polyps
[13,40]. Additionally, AMP genes were reported to be
expressed in certain tissue layers of Hydra. Most arminin para-
logues, for instance, were expressed exclusively in the
endodermal epithelial layer [12], while periculin transcripts
were rather restricted to the female germline precursor
cells within the interstitial cell lineage [13,40] (figure 1e).
More recently, several AMP genes with neuron-restricted
expression were discovered [11,16], but a comprehensive
overview of the AMP cell-type specific expression pattern is
still missing. Whole-genome expression atlases with single-
cell resolution, which recently became available [16,41],
uncovered a high diversity of cell types in Hydra. For
instance, five types of ectodermal epithelial cells with
specific transcriptional profiles and localization in the body
were identified using scRNA sequencing. Even more surpris-
ingly, up to 11 distinct spatially restricted neuronal cell types
have been characterized [16,41,42]. Given this diversity of cell
types, whole-genome expression atlases may provide a more
comprehensive understanding of AMPs expression pattern
and valuable insights into their function.

Our mapping of AMP genes expression using the scRNA-
seq atlas of H. vulgaris AEP [20,41] fully corroborated and
expanded earlier observations (figure 3). Indeed, the hydrama-
cin, all arminin and most kazal-like genes are expressed
exclusively in the endodermal epithelial cells (figure 3; elec-
tronic supplementary material, figure S8). Moreover, several
other kazal-like transcripts are expressed in the gland cells,
also located strictly in the endodermal layer. The ectodermal
epithelial cells, on the contrary, were generally devoid of any
AMP gene transcripts (figure 3). Our preliminary obser-
vations suggest that the genes encoding HyCWR peptides
might be the only group of AMPs expressed in the ectoder-
mal cells (electronic supplementary material, figure S7b,c).
The cells of the interstitial lineage localized in the ectodermal
layer (figure 1c), however, do express a variety of AMP genes.
First, female germline precursor cells produce transcripts
encoding the hydralysin, several periculin and Kazal-like
peptides (figure 3). Neurons localized in the ectodermal
and endodermal layers (figure 1c) express distinct sets of
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dual function peptides, such as Hym370, Hym176, RFamides
[11] and Hym121 [16]. Only one of these neuron-specific
AMPs, NDA-1, is produced by both ectodermal and
endodermal neurons.

The scRNA-seq data also provided insights into the
spatial expression of AMP genes along the body axis of
Hydra. AMP genes expressed in the endodermal epithelial
cells do not show any expression bias and their transcripts
are equally abundant in the polyp’s foot, body column,
head and tentacles (figure 3). Ectodermally expressed genes
coding for putative HyCWR peptides show more distinct
expression patterns, whereby one of them (G021955; elec-
tronic supplementary material, figure S7b,c), for instance, is
strongly expressed in the basal disc, while another paralogue
is not expressed in the foot at all (G0114589, electronic sup-
plementary material, figure S7b,c). Expression of Kazal-like
AMPs is confined to the upper body column, since zymogen
and granular gland cells are abundant in the upper gastric
region, but virtually absent from the polyp’s foot and tentacles
[41,43]. Intriguingly, since most of the neuronal populations
are spatially restricted [16,41], the expression of neuron-
derived AMP genes is also confined to a particular body com-
partment ofHydra. For instance, two RFamide precursor genes
are expressed only in the hypostome and tentacles (population
Ec4, figure 3), while Hym121 precursor is strictly present in the
tentacles (neuronal population Ec2). Therefore, in each part of
a polyp, a complex cocktail of AMPs is produced collectively
by a variety of cell types.

The scRNA-seq datasets along with in situ hybridizations
provide valuable insights into the expression of AMP genes
on mRNA level. However, the localization of mature peptides
translated from these mRNAs remains poorly investigated.
Owing to the availability of specific antibodies, the localiz-
ation of periculin peptides has been studied in most detail
[13,40]. Mature periculins are produced in the female germ-
line cells (figure 1e) located in the polyps ectoderm, are
secreted and found on the outer surface of the epithelium.
Even more intriguingly, periculins are also accumulated in
the vesicles within the nurse cells, incorporated into an
oocyte and released onto the embryo surface beneath the
cuticle layer at early gastrulation stages [13]. Additionally, a
fusion protein periculin-GFP expressed in the ectodermal
epithelial cells recapitulates the vesicular accumulation
and release of the peptide on the surface [13]. Similarly,
with the help of specific antibodies, deposition of the
neuronally expressed peptide NDA-1 into the glycocalyx of
Hydra has been also demonstrated [11]. Therefore, the glyco-
calyx appears impregnated with diverse AMPs. Further
proteome studies using mass spectrometry approaches, and
particularly, spatial proteomics [44], should provide a more
comprehensive view of the AMP localization in diverse
cells, tissues and body compartments of Hydra.

Another evident observation emerging from the scRNA-
seq data is that a substantial fraction of AMP genes is actually
not expressed in homeostatic conditions. For instance, 24 out of
28 periculin paralogues have no evidence for transcription in
the scRNAseq atlas, while several other AMP genes demon-
strate a barely detectable expression in a small proportion of
cells (figure 3). This is consistent with earlier observations
of Franzenburg and co-authors [12], who reported expression
of some arminin paralogues to be below detection level of
microarray hybridization.

A plausible explanation for this observation might be that
numerous paralogues of AMP genes actually represent
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pseudogenes. However, several lines of evidence speak against
this assumption. First, all paralogues, including the non-
expressed ones, display features of protein-coding genes,
such as an open-reading frame with a defined transcription
start site, a start and a stop codon. Second, the paralogues
show very similar exon-intron structure (particularly evident
in case of periculins, figure 2a). Third, the sequences of these
paralogs do not overlap with coding sequences of other
genes. Finally, ATAC-seq profiling of the accessible chromatin
states [20] identifies distinct peaks about 2.5 kbp upstream
from the coding sequences of AMP genes, even the ones that
have no expression evidence (figure 2f ). Such a pattern of
ATAC-signal is characteristic for most Hydra promoters [20]
and suggests that cis-regulatory elements upstream from
theAMPgenes are located in the open chromatin and are acces-
sible for binding of transcription factors. In homeostatic
conditions, although the genes appear silent, their promoters
are primed, and the transcription of AMP genes can be
effectively activated upon specific stimulus. Taken together,
cumulative evidence clearly indicates that numerous poorly
expressed periculin and arminin paralogues are true protein-
coding genes, whose expression is silenced in homeostatic
conditions (see also §6c).
 058
4. Advances in artificial intelligence: AMPs can
be predicted ab initio

Until recently, identification of AMPs in diverse organisms
relied mainly on homology-based screenings using known
peptides as a ‘bait’. Numerous AMP databases, such as the
APD3, DBAASP, GRAMPA and InverPep [45–48], contain
thousands of identified AMPs from animals and fungi,
plants and microorganisms, provide a rich source of reference
peptides for similarity searches and offer diverse build-in
tools to perform such screenings. However, the homology-
based approach has clear limitations, particularly given
that, across the animal tree, AMPs are typically encoded by
species-restricted genes [49]. Recent advances in artificial
intelligence (AI), including the deep- and machine learning
algorithms, provide a new opportunity of systematic ab
initio discovery of novel AMPs [50–56]. Similar to BLAST-
based homology searches, AI tools are dependent on rich
datasets of known AMPs. However, in contrast to other
approaches, AI predictive tools do not rely specifically on
the amino acid sequence of AMPs. Instead, they identify
essential physicochemical determinants of AMP functionality
in the known AMPs present in the training dataset (so-called
structure–function relations, which often are much more
complex than simply a presence of a given amino acid in a
certain position) and screen the target dataset to uncover pro-
teins with similar structure–function correlations and rank
them by likelihood of being bona fide AMPs. We have pre-
viously used one of these machine-learning algorithms
(MLA) [57] to identify putative transcripts encoding α-helical
AMPs among genes specifically expressed in Hydra neurons
[16]. This approach turned out to be very effective and
resulted in identification of dozens of putative neuronally
expressed secreted AMPs encoded in Cnidaria-specific
TRGs (figure 4a). These hitherto uncharacterized peptides,
such as the product of a TRG cluster131995 (figure 4b)
demonstrate a very distinct pattern of charge and secondary
structure distribution as well as strong predicted membrane
activity. One of these genes, a Hydra-specific TRG clus-
ter62692, was predicted to encode a precursor of a secreted
short peptide with strong antimicrobial activity. Our minimal
growth inhibitory concentration (MIC) assays confirmed that
the active peptide Hym121 encoded within cluster62692 was
indeed a neuron-derived AMP highly potent against gram-
positive and negative bacteria [16]. Hence, our functional
analysis confirmed the accuracy of the MLA prediction. Intri-
guingly, a similar approach and the same MLA were used to
identify a novel antimicrobial factor PACAP in the mamma-
lian brain [59]. This dual-function neuropeptide known to
regulate neurodevelopment, emotion and stress responses
has been recently demonstrated to function as an AMP.
Together, these observations demonstrate the power of AI
tools in discovering novel functionally relevant AMPs. They
also provide additional evidence, from the evolutionary per-
spective, for the structural similarity and functional
reciprocity of AMPs and neuropeptides [60–62].

In our previous study, we focused on discovering putative
AMPs exclusively expressed in neurons of H. vulgaris AEP.
A high computational demand of the MLA precluded us
from a deeper and more extensive analysis of AMP coding
genes in Hydra. Nowadays, with the complete genomes for
several Hydra species available and dramatically increased
computational power, a whole-genome survey of AMPs
encoded in Hydra genomes is feasible. It will be instrumental
in uncovering novel, previously uncharacterized and very
likely species-restricted AMP.
5. Lessons from the Hydra holobiont
(a) Expansion of AMP families in the phylogenetically

younger Hydra species
As any other animal, each Hydra species forms a stable
association with a specific multispecies bacterial community
and hence functions as a metaorganism [12,63]. Understand-
ing the mechanisms and molecular interactions involved in
long-term maintenance of the metaorganism homeostasis
remains a major challenge. Since AMPs are key factors regu-
lating bacterial colonization, it is imperative to consider
our findings on the AMP complexity in Hydra in the
holobiont framework.

First, our observations clearly indicate that the majority of
HydraAMPs are encoded inHydra-restricted genes. The forces
that propelled the emergence of these TRGs at the root Hydra
(figure 5a) radiation about 190 Ma [3] remain unclear. It is,
however, plausible that the transition of a Hydra ancestor
from the marine into the freshwater habitat has exposed the
host to a totally new microbial environment. Additionally, in
the new freshwater, low ion-strength environment, some
ancient AMPs might become inefficient (e.g. defensins are
generally known to be highly effective in a saltwater environ-
ment and tend to expand in the context of marine habitats
[64]). Together, these factors might have fuelled an elaboration
of a new molecular language for communication between the
host and the microbes.

Our genome-wide survey of AMP-encoding genes in
Hydra uncovered a high complexity of lineage-restricted
AMP families (figure 5a). While comparing different Hydra
species, one interesting tendency became obvious: the size of
AMP families was generally larger in the representatives of
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the ‘brown hydra’ group compared to the green hydra H. viri-
dissima (figures 2 and 5). For instance, only eight periculin genes
and a single Hym357 orthologue were found in the H. viridis-
sima genome, and hydramacin appears to be missing in this
species. This trend suggests that a major expansion of AMP
gene families has occurred after the segregation of the ‘green’
and ‘brown’ hydra groups, which took place about 193 Ma
[3]. This phylogenetic radiation coincides with a major
change in the Hydra biology—the loss of its algal photosym-
biont Chlorella. Given the tight metabolic co-dependence
between H. viridissima and its endosymbiont Chlorella [65],
such a transition must have been reflected in the entire holo-
biont biology and most likely had an impact on the relation
with the extracellularly located microbiota. It is plausible
that, upon the partner switch, certain function(s) previously
allocated to the photosymbiont might have been re-allocated
(outsourced) to the bacterial symbionts. This, in turn, necessi-
tated a more elaborate system of control exerted by Hydra on
itsmicrobiome in the form ofAMPs. This scenario is supported
by the observation that symbiotic H. viridissima harbour a
distinct microbiome clearly different from that of aposymbiotic
(algae-free) polyps [66]. We also note that colonization of
H. viridissima with Chlorella algae is associated with an up-
regulation of multiple Hydra-restricted TRGs [65], which
remain uncharacterized, but some of them might code for
putative AMPs.

These observations prompt a hypothesis that the loss
of a photosynthetic endosymbiont might be associated with
the increasing role of the extracellular bacterial microbiome,
which demands a more sophisticated control via complex
AMP cocktails. To test the hypothesis whether the bi- or tri-
partite holobionts architecture is reflected in the complexity
and evolutionary history of their AMP genes repertoire, a
comprehensive analysis across members of the Cnidaria
phylum is imperative. While virtually all Anthozoa species
form stable association with intracellular photobionts and
species-specific bacterial communities colonizing the surface
mucus layer, the gastrovascular system, and the skeleton
[67], members of other Cnidaria classes, such as Scyphozoa
and Hydrozoa, rarely harbour photobionts. H. viridissima
and Cassiopea xamachana are, in fact, rather exceptions
among the hydrozoans [68]. Although some recent studies
attempt to create a comprehensive survey of AMPs in
Cnidaria [36], their focus remains bound to exclusively con-
served gene families. Implementation of novel highly
automatized algorithms for AMP detection and annotation,
such as the MLAs, promises a major progress in under-
standing the link between AMP repertoire and holobiont
architecture in Cnidaria.

In this context, it is particularly interesting to compare the
diversification of AMPs to the evolutionary history of other
immune genes in Hydra and other symbiotic and non-sym-
biotic Cnidaria. The diversity of TLR genes in Hydra is very
low. In fact, only a single functional TLR is assembled from
the products of two genes—hyLRR and hyTRR [5,7]. Genes
coding for putative NOD-like receptors, on the contrary,
have undergone expansion in Hydra indeed [8]. Intriguingly,
the broadest repertoire of genes encoding NACHT- and
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NB-ARC-domain containing NOD-like receptors (over 260 in
total) is observed in the green H. viridissima [21]. The arsenal
of NLRs in the brown H. vulgaris is substantially smaller
(about 89–101 genes). Hence, we observe here an inverse
trend, compared to the AMP families—expansion of a gene
family in the context of algal symbiosis and contraction in
algae-free hydras. Remarkably, this trend is also evident on
the scale of the phylum Cnidaria: symbiotic cnidarians,
like the anemone Acropora, possess over 400 NLR genes,
while a symbiont-free jellyfish Morbakka has only 24 genes,
and Nematostella has only six genes for NLRs. Similarly,
TIR-domain-containing proteins are substantially more abun-
dant in H. viridissima (49) and Acropora (49) compared to
symbiont-free H. vulgaris (11) and Nematostella (17) [21].
Therefore, the evolutionary development of symbiosis with
algae by certain cnidarians likely required expansion and
greater sophistication of genes encoding innate immunity
pathway genes, critical for recognition and maintenance
of symbiotic organisms in cnidarian tissues. The loss of
photosynthetic symbionts resulted in contraction of the recep-
tor-encoding gene families and expansion of the families
encoding the effector molecules for communication with the
prokaryotic partners—the AMPs.

In sum, the emergence and ‘recent’ elaboration of the
AMP repertoire in the brown Hydra might be a signal of a
change in the holobiont complexity and biology. The com-
plexity of AMP families in diverse Hydra species, hence,
represents a genomic footprint of a co-evolution between
the host, similar to other species (e.g. the fly [69]) and its
microbiome and reflects the species’ adaptations to their
unique microbial environments.

(b) AMPs shape the spatiotemporal structure of the
Hydra microbiome

For several decades, it has been accepted that AMPs, as ‘killers’
and hence often referred to as host-defence peptides (HDP;
[70]), protect an animal from noxious microorganisms. More
recently, as stated above, we start appreciating a broader role
of AMPs in shaping the commensal microbiome [71]. The
Hydra host imposes strong selective forces on its microbiome
via section of diverse AMPs [72] and thereby maintains
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species-specific microbiota communities over extended
periods [12,63,73]. Our observations expand this view and
add a spatial dimension to these host–microbiome interactions.
We provide evidence that AMPs in Hydra are expressed in a
tightly regulated spatially controlled manner (figure 5b). A
plethora of AMPs are expressed throughout the endoderm of
Hydra along the entire body (figure 3). These peptides, most
likely, keep the gastric cavity of a polyp essentially sterile and
protect Hydra from pathogens. In the ectodermal layer, AMPs
expressedmostly in distinct spatially restricted neuronal popu-
lations are, hence, confined to certain body domains (figures 3
and 5). This suggests that spatially confined AMP cocktails are
secreted into the glycocalyx of Hydra and generate a complex
chemical landscape on the polyp’s surface. These distinct
microhabitats shape locally the microbiome of Hydra. They
not only regulate the density of the bacterial communities
a healthy polyp harbours (so called carrying capacity; [74])
but also control the composition of these communities.
As a result, certain species of bacteria, such as Pseudomonas,
Flavobacterium and Acidovorax, are confined to the lower part
of the Hydra polyp and virtually absent from the hypostome
[75]. On the contrary, other members of the microbiome
such as Curvibacter [11,76], are found more abundantly on
the polyp’s head and tentacles. Our analysis of AMP genes
expression uncovered their strict spatially restricted production
and suggested their contribution to the specific regionalization
of the microbiome (figure 5b–d).

We have mechanistically proven the role of Hydra0s AMPS
in shaping the microbial biogeography by genetically modi-
fying the expression pattern of a nerve cell-specific AMP,
NDA-1 [11]. Using a knockdown approach, we observed
that the absence of NDA-1 peptides results in both a shift
in the composition of the microbiome and a perturbation of
the microbial biogeography [11].
6. Perspectives and open questions
Our bioinformatic analysis uncovered a remarkable expansion
of AMPs families encoded inHydra-specific TRGs. However, to
fully understand the evolution of the AMP gene complement
and implications of this complexity for the Hydra holobiont,
further systematic studies are needed.

(a) Puzzling redundancy of AMP genes
Our analysis uncovered high evolutionary dynamics of AMP
families in Hydra. Generally, duplication of species-specific
AMP genes or their loss through pseudogenization are not
uncommon in the animal kingdom [49,77,78], and most ani-
mals indeed possess a broad array of AMPs. The clustered
genomic organization of AMP genes has also been recognized
as characteristic for numerous AMP families across animal
species [79–83]. However, we find it truly puzzling that numer-
ous paralogues of AMP genes in Hydra though having slightly
different nucleotide sequences, code for identical precursor
polypeptides and, hence, give rise to identical active peptides.
This is particularly evident in the case of the periculin family
(figure 2b; electronic supplementary material, figure S2). The
biological relevance of this apparent redundancy as well as
the evolutionary mechanisms that lead to it remain unclear.
A deep analysis of the paralogues’ nucleotide sequences,
such as the dN/dS estimation, may reveal sign of negative
or positive selection. Additionally, comparison of gene
complement and genomic organization between polyps from
different geographically isolated populations of the same
species might be informative. One can anticipate that such
survey may even uncover single amino acid polymorphisms
(similar, for instance, to the functionally crucial polymorphism
S69R in diptericin A sequences [69]) or copy number variation
in AMP genes within different Hydra clones. The current state
of accuracy in genome sequencing and assembly allows detect-
ing such genomic events.

In sum, the genome-wide survey of AMP repertoire in
Hydra provides evidence for an expansion of AMP gene
families. Together with observations on other invertebrate ani-
mals, plants and fungi [64,78,84,85], these findings support
the view that elaboration of the AMP arsenal through novel
family emergence, gene duplication and diversitifcation is a
common, universal principle in AMP genes evolution.
(b) Uncovering further AMP families in Hydra
Our analysis was focused on a detailed analysis of previously
identified AMP families in Hydra. Beyond that, we demonstrate
how additional, novel tools allow discovering novel members
of known families or even new families. For instance, using
a hidden Markov model-based approach, we uncovered a
novel family of putative secreted AMPs—the HyCWR family.
Novel AI-based tools also allow unbiased genome-wide screen-
ing and ab initio detection of AMPs. Our preliminary analysis
suggests that dozens of novel, previously not characterized
AMPs and their families are still hidden in the genome unrecog-
nized (figure 4a). This hypothesis is supported by our finding
that clusters of tandemly repeated Hydra-specific TRGs,
architecturally similar to, for instance, the periculin cluster
(figure 2a), are scattered through theHydragenome. Forexample,
a dense cluster of over 30 relatively short collinear uncharacter-
ized genes with no homologues outside Hydra (G009076 –
G009116) can be found on chromosome 5 of H. vulgaris AEP.

Testing the hypothesis whether this plethora of genes
encode novel AMPs and characterizing them represent a
major analytical challenge. However, this analysis may be
streamlined by applying improved AI tools. In our previous
efforts, we trained the MLA using a dataset of predominantly
human AMPs [57]. Therefore, our analysis had a certain bias
and likely, favoured identifying AMPs with features common
to those of Bilateria. However, the dynamic nature of MLA
allows re-training them on additional or expanded datasets.
Addition of already discovered and functionally validated
AMPs from Hydra into the training dataset may substantially
increase the accuracy of the MLAs. Moreover, the rapidly
evolving tools for three-dimensional protein modelling,
such as the AlphaFold and similar template-independent
tools [86–88], offer an opportunity to predict with high confi-
dence the folding of peptides and, hence, may greatly
streamline the in silico analysis of putative AMPs and facili-
tate selection of candidates for testing in vivo and in vitro.
We particularly emphasize that testing the function of candi-
date AMPs remains a major bottleneck. Not all peptides can
be synthetized effectively in their active form and tested
in vitro, and recombinant expression may be also challenging
due to toxicity for cells. Finally, the in vivo studies of AMPs by
manipulating the genes in the host though transgenesis are
very laborious and require smart selection of candidates.
AI algorithms represent an excellent tool for making an ‘edu-
cated guess’ and selecting candidates for in-depth validation.
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The majority of AMPs in Hydra are encoded in Hydra-
restricted TRGs (figure 5a), yet the hydramacin family is an
exception. It appears to be confined to the brown Hydra
group, since no orthologues were found in H. viridissima
(electronic supplementary material, figure S5). This suggests
that hydramacin either has emerged after the split of brown
and green hydras, or has been lost in H. viridissima. The
latter appears more plausible, since genes coding for proteins
similar to hydramacin were found in several bilaterian
species, such as leeches and molluscs [5,9,89,90]. Our synteny
analysis (electronic supplementary material, figure S5), which
indicates that the entire locus containing the hydramacin gene
might have been lost in the green hydra lineage, provides an
additional support for this hypothesis. Hence, the most par-
simonious explanation of the mosaic hydramacin distribution
on the phylogenetic tree is that the hydramacin family is
ancient and likely common for all Eumetazoa, but its mem-
bers have been either lost in some lineages or evolved
beyond the level of detection. This gene loss might be not
the only example of reduction in AMP repertoire in Hydra.
For instance, our analysis provided no evidence for the pres-
ence of canonical defensins in Hydra. This appears surprising
given a broad phylogenetic distribution of these peptides.
However, partial or complete absence of some AMP families
has been described in vertebrate and invertebrate species
[34,77,91–93], supporting the high evolutionary dynamics of
AMP families. To resolve the paradoxical absence of some
AMP families in Hydra and identify the factors that might
have caused this gene loss, a deep cross-species and, possibly,
cross-isolate comparison of the genomic organization (exon-
intron structure, synteny) are needed along with a survey
of the microbiomes and the ecology of these species and iso-
lates. Extensive implementation of AI tools may facilitate
genome-wide discovery and comparison of AMP repertoires.
(c) Uncovering expression of ‘silent’ AMP genes
Although many AMP genes discovered in Hydra are character-
ized by a constitutive expression, a substantial fraction
of AMP genes appears not to be expressed in homeostatic con-
ditions (figure 3; electronic supplementary material, figure S7).
This suggests that AMPexpression is under a tight developmen-
tal as well as environmental control. In fact, some periculin genes
are developmentally regulated and expressed at particularly
high level in mature oocytes. As maternal antimicrobial
peptides, they control bacterial colonization of the Hydra
embryos [13]. Absence of expression in adult polyps also
indicates that some AMPs might be inducible, and their
expression is triggered upon a specific signal, such as encounter
of a bacterial species or metabolite. Indeed, earlier observations
provide strong evidence that expression of some hydramacin,
arminin and periculinparalogues can be up-regulated in thepres-
ence of diverse bacterial products (LPS, flagellin) or danger
signals (dsRNA) [5]. Moreover, interference with the upstream
signalling pathways [18], and tissue manipulations such as
amputation-induced regeneration [94] and elimination of neur-
ons [95,96], also result in modulation of AMP gene expression.
This may cause a concomitant enhanced antimicrobial activity
of the tissue [97]. However, it remains unclear, whether the
transcription of already expressed paralogues is elevated, or
additional previously silent AMP genes (figures 2c and 3) are
turned on. A particularly exciting possibility is that ectodermal
cells that do not produce any AMPs in homeostatic condition
(figures 3 and 5c), start expressing certain AMP genes following
developmental or environmental signals.
(d) For AMPs the name no longer fits the function
As outlined in detail in another paper in this issue [98], from
the beginning of animal (and plant) evolution, AMPs serve a
crucial role in regulating the composition of the microbiome
[1]. These findings make it quite clear that AMPs do much
more than just kill pathogens. They play a ‘silent’ role in
plant, animal and human health by permitting coexistence
with environmental and symbiotic microbes, shaping the
microbiome according to the susceptibility to particular
AMPs, contributing to the spatial organization of the micro-
biota. Instead of being ‘anti’-microbial, one could just as well
speak of ‘pro’-microbial peptides. The function of AMPs goes
far beyond just killing bacteria. It is generally accepted that
AMPs inhibit growth of microbes, through interfering with a
diversity of cellular function in bacterial cells [2]. However,
they can also interfere with the microbes physiology in
plethora of other ways. Accumulating evidence indicates that
AMPs may modulate formation of biofilms and swarming be-
haviour of microbes [99], or act as immunomodulators [100].
AMPs produced byHydramay appear to display similarmulti-
functionality. Most of them do demonstrate strong growth-
inhibiting activity in minimal inhibitory concentration (MIC)
assays [9–11]. However, we noticed that some peptides have
milder effects on target bacteria and rather change their physi-
ology. For instance, that the Hym121 peptide effectively
inhibits growth of Curvibacter and Acidovorax, but does not
kill Bacillus megaterium and only alters its colony morphology,
likely by reducing cells motility [16]. Therefore, this AMP actu-
ally acts as a signalling molecule (somehow reminiscent of the
signalling role of microbe-derived antibiotics [101]). Similar
observations remain very scarce, and no systematic survey of
non-conventional roles of Hydra AMPs has been performed.
Since MIC assays have been the main tools to test AMPs’
activity and infer function, behaviour-modulating aspects of
AMP activity have escaped detection so far. We emphasize
the urgent need to develop and implement novel methods,
such as motility assays and microcosm setups [74], to gain a
comprehesive view of diverse AMP roles in animals. This
thinking may also shape the development of in silico tools,
such as activity predictors and AI-based algorithms (in line
with the current efforts [56,102], whose logic has been mainly
built around the membrane disruptive and bacteria killing
properties. These developments may also fuel discovery and
a guided design of novel antibiotics [56,103–105].

In sum, our survey of AMPs inHydra uncovered a fascinat-
ingdiversityand complex role of these TRGs inHydrabiology. It
is generally accepted that emergence of novel, taxon-restricted
genes may promote emergence of novel traits allowing access
to a new environment. As demonstrated here, families of
AMPs appear to represent an attractive system for experimen-
tally dissecting the link between gene emergence and
expansion, and a (meta)organism’s phenotype and its adap-
tation to the environment. Hydra offers a unique experimental
platform for testing how the host sculpts its microbiome, and
the microbiome shapes the genome of its host. Hence, the
studies onHydra provide an evolutionary informed perspective
onto the principles governing the intricate host–microbiome
interactions and the molecular mechanisms behind them
[17,106–108]. They enrich our understanding of the critical
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factors maintaining the metaorganism homeostasis and health
across the animal kingdom.
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